
Sam Ruby, Saturday August 24th, 2024

Shared Nothing Architecture
How to scale to infinity
https://intertwingly.net/slides/2024/

https://intertwingly.net/slides/2024/

Just imagine…

What if you could give every user of your software
the experience of having a dedicated server
machine assigned to them?

Sam Ruby
Brief History

• Retired June 2020

• 39 years at IBM

• Wikipedia

• Wrote an app March 2022

• https://github.com/rubys/showcase

• Unretired August 2022

• Fly.io

https://en.wikipedia.org/wiki/Sam_Ruby
https://github.com/rubys/showcase
https://intertwingly.net/blog/2022/08/13/Unretiring
http://fly.io

Introduction
Part 0

Introduction
So, I wrote a book…

Introduction
… revised it frequently

… RailsWorld is in September, when Rails 8 is expected to ship.

Introduction
I work for…

Introduction
I wrote an app…

smooth.fly.dev

https://smooth.fly.dev/

smooth.fly.dev

• Application is live, feel free to
explore

• Events understandably require
authentication

• Fully functional demo - click on
to start

• Documentation and source code
are available

Showcase Application

https://smooth.fly.dev/
https://smooth.fly.dev/showcase/docs/
https://github.com/rubys/showcase#readme

Introduction
… all three are all interrelated

•

Introduction
Shared Nothing Architecture

• My app is written primarily in Ruby on Rails, but yours need not be.

• My app is hosted on fly.io, but yours need not be.

• My app schedules ballroom dancing events, but yours may do something
different.

My app is just for illustrative purposes. I don’t get paid on commission.

Defining the
Problem

Part 1

Users of my app

Events Cities Countries Continents

2022 8 6 1 1

2023 30 20 3 2

2024
(YTD) 90 45 5 3

Statement of the problem
… these are good problems to have …

• Exponential growth - tripling each year

• Users geographically distributed

• Apps “want” to be near users

• Apps “want” to be near data

Planning for growth

• What design choices can we make today to prepare for a future where there
are a thousand events geographically dispersed around the globe?

• This conceivably could happen in as little as two to three years

• What engineering tradeoffs would be required to pull this off?

• You can’t magically make problems go away completely, but you can make
them smaller and more manageable

Establishing
the baseline

Part 2

Establishing the Baseline
K8s and microservices

• You can’t make proper engineering tradeoffs without a baseline

• You may have heard of Kubernetes and microservices, they seem all the rage
these days.

• Let’s start with a chart from the top (non-sponsored) Google search result for
microservices: https://microservices.io/

Something a bit smaller
(from the same site)

https://microservices.io/post/architecture/2023/09/19/assemblage-part-3-whats-a-service-architecture.html

(Also from the same site)

• I kid you not, this is from the
same site - complete with the
description in the lower left

Alternative

https://microservices.io/patterns/monolithic.html

Observations
Comparison of the two approaches identified so far

• Microservices trades application complexity for orchestration complexity - in
some cases that may be a valid trade-off

• Both approaches can be made to scale

• Neither approach directly address the key problems

• Apps “want” to be near users

• Apps “want” to be near data

Shared
Nothing

Part 3

Shared Nothing
A journey from one to infinity

This part is going to have a number of sub-parts:

• Start with a single user / single machine

• Run multiple users with separate databases

• Run multiple machines ← this is where we scale

• Identify macro services

• Backups ← this part is crucial

• Logging

• Startup

• Admin UI

Step 1: Start with a single user / single VM
You are going to start this way anyway, so go with it…

• On your development machine you run all services on one
machine, don’t you? (Perhaps some services in a container, but
still on the same machine)

• Put all of the services needed to support one customer in one
Docker image and deploy it

Step 1: Start with a single user / single VM
Standard Ruby on Rails

2022 - 3Q 2024

• My original deployment target: a
M1 Mac mini in my attic

• Ample capacity

• Latency to Perth would be an
issue

• Unaccessible at times due to
power outages, storms

Step 1: Start with a single user /
single VM

Step 1: Start with a single user / single VM
Advantages

• No need to modify your application

• Eliminating the need for a network in producing a response to a request both
increases throughput and reliability.

• Simultaneously deploy interdependent services as an atomic operation as
opposed to independent updates of microservices running in production.

• First rule of distributed computing: don’t.

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

Step 2: Run multiple users with separate databases

• This step is technically optional, but it helps when you break a larger task into
discrete subtasks

• Making databases multi-tenant is hard, and requires application changes and/
or database support, so lets not do that.

• All we need is an application server that can serve multiple applications, and
Phusion Passenger can do that.

https://www.phusionpassenger.com/

Step 2: Run multiple users with separate databases
Use Passenger to run multiple applications

Step 2: Run multiple users with separate databases
Shared-Nothing Architecture

• Grey beards know this as a shared-nothing architecture

• Amazon rediscovered this pattern and called it cell-based architecture

• I like this name too!

• Astute members of the audience will note that redis is shared, but only
technically; prefixes are used to ensure that no data overlaps

https://en.wikipedia.org/wiki/Shared-nothing_architecture
https://docs.aws.amazon.com/wellarchitected/latest/reducing-scope-of-impact-with-cell-based-architecture/what-is-a-cell-based-architecture.html

Step 3: Multiple machines
Scale!

• AnyCast is a methodology where a single IP address is shared between
multiple servers

• Load balancing proxies (such as Fly Proxy) will route requests to the nearest
available server.

• Dynamic Request Routing features (these are platform specific) can be used
to ensure that requests are routed to the right place.

https://en.wikipedia.org/wiki/Anycast
https://fly.io/docs/reference/fly-proxy/
https://fly.io/docs/networking/dynamic-request-routing/

Step 3: Run multiple machines

AnyCast /Proxy

Anycast

The preceding picture is misleading; it looks like AnyCast is a single
machine, and therefore a bottleneck and single point of failure. What
actually happens:

• AnyCast is part of TCP/IP; and selects the nearest edge server

• Copy of the proxy running on the edge selects the machine:

• Based on HTTP headers, if provided

• Nearest available if not

• Target machine can ask that the request be rerouted (replayed)

Anycast
fly.io regions

http://fly.io

Events per region
Why not one event per machine?

Capacity planning - memory
Typical load

Note: this app reserves 2Gb of swap space on each machine.

Capacity Planning - CPU
Typical load

Capacity Planning
Typical Load

This application certainly isn’t CPU constrained:

• Most requests take less than 100ms to process; many under 40ms.

• An average person generates a single digit number of requests per

minute.

• Peak load is, perhaps, four users?

Response times
Do we scale?

Response times

• Requests from users local to an event find a machine quickly

• Typically a request never leaves a geographic region

• Remote requests are still possible

• Once a machine receives a request, everything needed to produce a
response is available on that machine

• Both vertical (more events per machine and bigger machines) and
horizontal (more machines) scaling are enabled by this architecture.

Scalability
Mission accomplished?

• Revisiting the key goals:

• Apps “want” to be near users - ✅

• Apps “want” to be near data - ✅

Step 4: Macro services
Revisiting microservices

I don’t see the value is splitting invoicing from scheduling from data
entry, but…

• Users want printed reports

• Printing from the browser is a lousy end-user-interface

• Generating PDFs using Puppeteer is much better

Macroservices
Issues to be resolved

Reality:

• Chrome is bigger than my app

• Chrome is a memory hog

Result: running both events and puppeteer on the same machine
results in crashes.

Macroservices
The solution: print on demand

Print on Demand
Machine configuration

• Four geographically dispersed machines are defined

• 2Gb of RAM + 2Gb of swap each

• Each machine is shuts down when not in use; restarts on demand

Step 5: Backups
Engineering tradeoffs

• Backing up 11 regions is a bigger problem than backing up 1 region.

• Data from events don’t overlap

Backup solution
Current implementation

• Whenever an event goes idle, its database and media files are copied
to all other regions using rsync.

• All data is also rsync’ed to my home server as a fallback of last
resort. This also makes it easy to debug problems with a copy of live
data.

• My home server takes daily snapshots of everything (using hard links
when data is unchanged to minimize storage).

https://rsync.samba.org/
https://en.wikipedia.org/wiki/Hard_link

Step 6: Logging
More engineering tradeoffs

• 11 region problem applies here too

Logging
Solution: log shipper!

Shipping Logs
More information

• Log shipper

• Multiple Logs for Resiliency

https://fly.io/blog/shipping-logs/
https://fly.io/blog/redundant-logs/

Step 7: Deploying
Rubber meets the road

• Deploying a update is a matter of replacing a machine and starting
the application.

• No ordering problems like you see with microservices

• Machines start in milliseconds. A (small number) of hundreds of

milliseconds to be sure, but still fast. And proxies will buffer.

• If DB migration or rsync is needed, app startup may be delayed,

but displaying a “please wait” helps.

Step 8: Admin UI
Automating administration

Shared Nothing
A journey from one to infinity

This part is going to have a number of sub-parts:

• Start with a single user / single machine

• Run multiple users with separate databases

• Run multiple machines ← this is where we scale
• Identify macro services

• Backups ← this part is crucial

• Logging

• Startup

• Admin UI

Just imagine…

What if you could give every user of your software
the experience of having a dedicated server
machine assigned to them?

Links

• Agile Web Development with
Rails 7.2

• Fly.io

• smooth.fly.dev

• https://github.com/rubys/
showcase/blob/main/
ARCHITECTURE.md

Shared Nothing

https://pragprog.com/titles/rails72/agile-web-development-with-rails-7-2/
https://pragprog.com/titles/rails72/agile-web-development-with-rails-7-2/
http://fly.io
https://smooth.fly.dev/
https://github.com/rubys/showcase/blob/main/ARCHITECTURE.md
https://github.com/rubys/showcase/blob/main/ARCHITECTURE.md
https://github.com/rubys/showcase/blob/main/ARCHITECTURE.md

