Shared Nothing Architecture

How to scale to infinity I
https://intertwingly.net/slides/2024/ O 40
4

"
Ly

W
iy it g
- ri
1
Sam Ruby, Saturday August 24th, 2024 .

https://intertwingly.net/slides/2024/

Just imagine...

What if you could give every user of your software
the experience of having a dedicated server
machine assigned to them?

Sam Ruby

Brief History

e Retired June 2020
e 39 years at IBM

o Wikipedia

 Wrote an app March 2022

» https://qgithub.com/rubys/showcase
* Unretired August 2022

* Fly.io

https://en.wikipedia.org/wiki/Sam_Ruby
https://github.com/rubys/showcase
https://intertwingly.net/blog/2022/08/13/Unretiring
http://fly.io

Introduction

Introduction

So, | wrote a book...

The

Pr%g?nmers

ileWeb
evelopment

with Rails 7.2

Sam Ruby
with Dave Thomas

Introduction

... revised it frequently

e =
Prag ek :
MroRITETIeT™ L .
NEC =)

Agile Web AgileWeb

e\Web .
}ﬁ-\ elopment ileWeb ; i e\’\ ‘eb e W Development ﬁwc lopment
with Ralls A[%(‘!\((\\(I)(l?n(nl evelo ment C' O yment ClOCtl)'ncnl t\'“h, ails 6 ‘-\ ith I ails 7

with Rails .. , with 4 ails 5 with ils 5.1

X

. RailsWorld is in September, when Rails 8 is expected to ship.

Introduction

| work for...

2 Fly.io

Introduction

| wrote an app...

smooth.fly.dev

https://smooth.fly.dev/

Showcase Application
smooth.fly.dev

* Application is live, feel free to
explore

* Events understandably require
authentication

 Fully functional demo - click on

mto start

e Documentation and source code
are available

Showcase

TBD
0 heats

Summary Publish Settings

See: docs, code, issues.

Click on the @ in the top left corner of this page to see helpful hints.

All data entered in this demo event is visible to everyone, and will be discarded
about an hour after this demo is last accessed, or when a new version of the

showcase software is deployed, whichever comes first.

https://smooth.fly.dev/
https://smooth.fly.dev/showcase/docs/
https://github.com/rubys/showcase#readme

Introduction

... all three are all interrelated

The .
Praﬁnahc
ogrammers

AgileWeb
evelopment
with Rails 7
SQIH Ruby

Arthur
Mur

Dance Centers

Introduction
Shared Nothing Architecture

My app Is written primarily in Ruby on Rails, but yours need not be.
My app is hosted on fly.io, but yours need not be.

My app schedules ballroom dancing events, but yours may do something
different.

My app is just for illustrative purposes. | don’t get paid on commission.

Defining the
Problem

Users of my app

Events

Cities

Countries

Continents

Statement of the problem

... these are good problems to have ...

 Exponential growth - tripling each year
* Users geographically distributed
 Apps “want” to be near users

 Apps “want” to be near data

Planning for growth

 What design choices can we make today to prepare for a future where there
are a thousand events geographically dispersed around the globe?

* This concelvably could happen in as little as two to three years
 What engineering tradeoffs would be required to pull this off?

* You can’t magically make problems go away completely, but you can make
them smaller and more manageable

Establishing
the baseline

Establishing the Baseline

K8s and microservices

* You can’t make proper engineering tradeoffs without a baseline

* You may have heard of Kubernetes and microservices, they seem all the rage
these days.

e |Let’s start with a chart from the top (nhon-sponsored) Google search result for
microservices: https://microservices.io/

||

Architecture PatternLanguage ...

icroservice

... The M

| \
\ |
- = L aae
!) c 2 c ! !
| pm.o e.o " "
“ mmm .mm | |
I |223] |28 ! !
. |s8E| |EE . _
v leT 8 |58 ! !
|8 = " "
| | |
| —" |
PP = "
|
TS T T TS TS T T T T T s T T T s T T T TS | " o
| |] .m
| | X o
| |) o
| c - | | L=]
L&l (8s] | Bl 0 %
“ =G T g 2% | !
| Q5 E® e c |)
| ES J = em. | b-mmmmm -
| = c 0 c w
7] c = !
" S 8 S8 g | O
| (&) © O vm.
| w !
| 2 !
e e e e o o e 1
LA]
| \
| |
\ |
\ \
| |
| \
| |
| |
| |
2 A
[| \
[| |
[' |
[| |
[' |
o = vy
[£ | |
[o ' |
[= | |
[o | |
[" | |
[' \
[| |
[N I |
[s | |
[| |
[“a ' |
[S |
T, E T
EENE g RN
1|8 < %
“ " A% m |]
o a N
[|
[| \
[|
[|
[[|
[' \
e | \
1D g Lo
L]
| ..nm | |
R -
| ..mm | |
= | |
s 8 i
[S A P 1 \
\ \
| |
L A (. .
| | | |
K Lo
| | | |
| | | |
| |
b 5 P v
| | Q | |
\ | @ Q | |
| | %.w o | |
| | am | | \
L ms | v
Lo |8 " i Lo
. | | o
\ | = | |
L ¥ B sl g
i © | - E
® -
Lo g8l 2 zg| 218
| | baw @ £ =@
! ! m.m Q. Q N:_p.
i R [B !
| | © o u_m"
\ | [l Q_a.
l (IR L iy (o
e e e e e e e — e — e — e — e —————————————— - i
- TTTT T T T T ETEETEETEEEE T T T T E A A E ST |
| |
£ = "
>= |
|28 2| |E g |c!
o 0! 20 le-»/25 €z a | £
= £ |Eg E8| (88| | s @
(1] | I = - - O
(4] Q. m.m ms [} m Q
=, (63 o] % é | E!
o ® 3 S |
< . a n
§5 g ¢
S € 3
o ® = Q
v o .w w
A
'
'
'
;
]
Y
=g Vv
5§ = T
> m @
= @© c
O O - D
= 3 O

et
|
x |
5. || gl 1s]
=805~ o © e |
S = o oD «
Q= < —_ D = !
n|u.e m m. O |
25[|2 gl | 2 |
o |
8 |
S |
m |
B € o 3 m,"
52 2 € a| 4!
25 Q% @ '
=g 88 ° c
& i = gl o
b.
O
"
|
|
|
| i e p———— |
| T b "
" " RES B "
" " ." m cnlvﬁ —
| | . L 0 o
" V2 | B jewEE| <!
| | (3] | o ¥ = - |
||||||||||||||| | o " = Cnﬁu @
|ﬂ | m .. ” M m.
L | 5 o S |
" | o .WJ"" ..vuA..
= = |
c " " O b." nnnnnnnnnnnnnnnn m—m..
22 s O |
mm o] —
22| |S2| 1 | © !
_m.m. Pm. A |
! \
! \
! \
| NI AT IO I I IS IS |
T o Vo
S E! ! | 8
SO | e | -
R IREE | B
R R mn b o [*° "
ne.. .m [} m.v
o [~ U -—
N rm.. o o P —
© T L] mm [nw
S x i m.m b
B g9 Vo '
o = [} m s [
mm (| o o (]
< © oy 3 4 = 'l
N = b g !
o by o
[| W o
R slel
[] [N'
." F_m .m.."" W \
lllllllllllllll s [el B w
" N o Qi) |2
’—./'.m .Mld-_. @ g - - - -~
. . m. S | =
" | cii |2
| " D = L c
! ! = m "" 2
| ' Q
! B SN, o
) e e e e m e e]
| e e e e o e e e e - ——————————————————————— - — - -]
.1 IIIIIIIIIIIIII |
' " JEm s E e
| c | "
! (] | |
! > | |
| e " _
" 2 MW" | n e
' 8 5 " o 2
7 - ! ! % E ja—]
c | 3 ! _ 23
— | (I " o S
m et b b D il | Sd,t
] ~
N
a =SS s sssssmmmmmemms | "
Q | |
|
" |
2 " 28 A S —
o " = o
- ' D = C
.v | ee _mn F—_—
) | o 3 %
8 |58 g
& | n O 81
c X = @ o
p= | sel £
- " S0 @
0 " N m"
“ | |
o | O |
o g
<
e |
| |
| |
] |
] |
| |
| |
!) o) !
| 25 £ 5 "
= |
" - il SR >33 c O
| S O = o 5|
1 mc o o o !
" ° =a TQ
' O =
| —_ =
| oL
1 |
| 25

|
|
|
|
|
[= |
o !
< |
,.M. |
o]
................. > @ "
£ |
) |
Q |
© |
™ |
|
|
/ g "
2 |
@ |
m . »
3 | c
2
) \
1 -
................. > 53 | S
2 ! =
Sd N;. %
g, g
-
|
Q| £
0, o
o) o
R, O !
t
o E =
g g |3
e
)
7
III -m
M]
tl w * m
Al 8 " m
(52 " 5
c |wx v
5|2
|
[
e m 7 :
m | 4; m nr.v
| \ ﬂvn
| \ -
o Ls £2
= .m ov%
&m X z 5 (] —
| D O c
m " n < m
i a8 >
® 5 fe)
" = o
E | S

Learn-Build-Assess Microservices http://adopt.microservices.io

Copyright © 2023. Chris Richardson Consulting, Inc. All rights reserved.

Something a bit smaller
(from the same site)

g / Delivery
System operations:
createOrder()

Service w
«Subdomain«
Delivery
Management
cancelOrder()
findOrderHistory() Gateway
createConsumer()

. Owns %
Aggrogate- “ 3 Delivery team
D;ci'iv;ery
Courler
§ \ Order
E Service
% % Owns .

/ Consumer
Y 58
% E

| X
Service

. Owns % %
«Subdomaine / %
Consumer '
Management .
=Aggrogate~
Order
Order team ;

Application

=Aggregaic~
Consumer

Consumer team

N

Z

N

\\
\
3

3

3

3

3

3

N

Y

/ D \\

DevOps (Stream-aligned) team

https://microservices.io/post/architecture/2023/09/19/assemblage-part-3-whats-a-service-architecture.html

Alternative

(Also from the same site)

| kid you not, this is from the
same site - complete with the
description in the lower left

Traditional web application architecture

StoreFrontUl

Accounting
Service

Browser |(-—* Apache

Simple to

develop
test
deploy
scale

InventoryService

Shipping
Service

MySQL
Database

https://microservices.io/patterns/monolithic.html

Observations

Comparison of the two approaches identified so far

 Microservices trades application complexity for orchestration complexity - in
some cases that may be a valid trade-off

 Both approaches can be made to scale

* Neither approach directly address the key problems

 Apps “want” to be near users

 Apps “want” to be near data

Shared Nothing

A journey from one to Infinity

This part is going to have a number of sub-parts:

o Start with a single user / single machine

 Run multiple users with separate databases
 Run multiple machines + this is where we scale
 |dentify macro services

 Backups « this part is crucial

* Logging

o Startup

 Admin Ul

Step 1: Start with a single user / single VM

You are going to start this way anyway, so go with it...

* On your development machine you run all services on one
machine, don’t you? (Perhaps some services in a container, but
still on the same machine)

* Put all of the services needed to support one customer in one
Docker image and deploy it

Step 1: Start with a single user / single VM
Standard Ruby on Rails

Step 1: Start with a single user /
single VM

2022 - 3Q 2024

My original deployment target: a
M1 Mac mini in my attic

 Ample capacity

» | atency to Perth would be an
Issue

e Unaccessible at times due to
power outages, storms

Step 1: Start with a single user / single VM

Advantages

 No need to modify your application

* Eliminating the need for a network in producing a response to a request both
Increases throughput and reliability.

o Simultaneously deploy interdependent services as an atomic operation as
opposed to independent updates of microservices running in production.

* First rule of distributed computing: don’t.

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

Step 2: Run multiple users with separate databases

* This step is technically optional, but it helps when you break a larger task into
discrete subtasks

 Making databases multi-tenant is hard, and requires application changes and/
or database support, so lets not do that.

* All we need is an application server that can serve multiple applications, and
Phusion Passenger can do that.

https://www.phusionpassenger.com/

Step 2: Run multiple users with separate databases
Use Passenger to run multiple applications

Step 2: Run multiple users with separate databases
Shared-Nothing Architecture

* (Grey beards know this as a shared-nothing architecture

 Amazon rediscovered this pattern and called it cell-based architecture

e | like this name too!

* Astute members of the audience will note that redis is shared, but only
technically; prefixes are used to ensure that no data overlaps

https://en.wikipedia.org/wiki/Shared-nothing_architecture
https://docs.aws.amazon.com/wellarchitected/latest/reducing-scope-of-impact-with-cell-based-architecture/what-is-a-cell-based-architecture.html

S
|

O]
[

Isolated failure

ECS
Storage

Application
Load Balancer

ECS

Cell router
Application
Load Balancer

m m . B m
4 - [s) m o !
' " n| w mu 2
m —> $ s 3 S
' @ - md n ,
] n " m M
| @ : :
o - :
.) "
" ' e '
' : :
"D boooooovee | utm0000000|lllol0100ououo-ooooooololoottoto-aooooloOOIOlt--l-t-ttlo-n "
: aue|d j04u0) :

Step 3: Multiple machines

Scale!

 AnyCast is a methodology where a single IP address is shared between
multiple servers

* |oad balancing proxies (such as Fly Proxy) will route requests to the nearest
available server.

 Dynamic Request Routing features (these are platform specific) can be used
to ensure that requests are routed to the right place.

https://en.wikipedia.org/wiki/Anycast
https://fly.io/docs/reference/fly-proxy/
https://fly.io/docs/networking/dynamic-request-routing/

Step 3: Run multiple machines

AnyCast /Proxy

v
%Q\ rgs /mB\VSQLm Wi bgg r?:lis /ﬁﬂéb\%Qthe Wi \ 5\ r?iis /ug;g\%mne

) aa =

X X

Anycast

The preceding picture is misleading; it looks like AnyCast is a single
machine, and therefore a bottleneck and single point of failure. What
actually happens:

* AnyCast is part of TCP/IP; and selects the nearest edge server
* Copy of the proxy running on the edge selects the machine:

« Based on HT TP headers, if provided

 Nearest available if not
* Target machine can ask that the request be rerouted (replayed)

Anycast

fly.lo regions

http://fly.io

Events per region

Why not one event per machine?

atl Region

2024

o Charlotte

o Kennesaw

« Nashville-Green Hills
e Richmond

 Medal Ball
« Team Match
 Nouveau Duo

2023

o Charlotte

o Kennesaw

« Nashville-Green Hills
« Richmond

 Medal Ball
« Team Match
 Nouveau Duo

2022

o Charlotte
 Kennesaw

Capacity planning - memory
Typical load

Memory Utilization

1GiB

768 MiB

512 MiB —

256 MiB

OB
16:35 16:40 16:45 16:50 16:55 17:00 17:05 17:10 1715 17:20 17:25

== Total == ¢7843e65b516d8 - sjc == 3d8d33df06ee18 - ord == 148e5267a1d928 - syd 6e82e2db242387 - mia == 32874276f79348 - sea
= 91859e2c11d618 - dfw d890d65f622428 - iad 3d8d70e6fe73e8 - ewr == 48ed124c710608 - waw 3d8d9505b36938 - yul 9080ee5da341e8 - atl

Note: this app reserves 2Gb of swap space on each machine.

Capacity Planning - CPU

Typical load

CPU Utilization &

100%
80%
60%
40%

20%
0% = —~ L\
16:35 16:40 16:45 16:50 16:55 17:00 17:05 17:10 17:15 17:20 17:25 17:30
= 148e5267a1d928 - syd == 3287427679348 - sea == 3d8d33df06eel8 - ord == 3d8d70e6fe73e8 - ewr == 3d8d9505b36938 - yul == 48ed124c710608 - waw
- 6e82e2db242387 - mia == 9080ece5da341e8 - atl == 91859e2c11d618 - dfw == d890d65f622428 - iad == e7843e65b516dS8 - sjc

Capacity Planning

Typical Load

This application certainly isn’t CPU constrained:
* Most requests take less than 100ms to process; many under 40ms.

* An average person generates a single digit number of requests per
minute.

 Peak load is, perhaps, four users?

Response times

Do we scale?

Response times

* Requests from users local to an event find a machine quickly
* [ypically a request never leaves a geographic region
 Remote requests are still possible

* Once a machine receives a request, everything needed to produce a
response Is available on that machine

* Both vertical (more events per machine and bigger machines) and
horizontal (more machines) scaling are enabled by this architecture.

Scalability

Mission accomplished?

* Revisiting the key goals:

o Apps “want” to be near users -

 Apps “want” to be near data -

Step 4: Macro services

Revisiting microservices

| don’t see the value is splitting invoicing from scheduling from data
entry, but...

* Users want printed reports
* Printing from the browser is a lousy end-user-interface
* (Generating PDFs using Puppeteer is much better

NNV A

Macroservices

Issues to be resolved

Reality:
 Chrome is bigger than my app
 Chrome is a memory hog

Result: running both events and puppeteer on the same machine
results In crashes.

Macroservices

The solution: print on demand

Print on Demand

Machine configuration

* Four geographically dispersed machines are defined
e 2Gb of RAM + 2Gb of swap each

e Fach machine Is shuts down when not Iin use; restarts on demand

Step 5: Backups

Engineering tradeoffs

 Backing up 11 regions is a bigger problem than backing up 1 region.
 Data from events don’t overlap

Backup solution

Current implementation

* Whenever an event goes idle, its database and media files are copied
to all other regions using rsync.

* All data is also rsync’ed to my home server as a fallback of last
resort. This also makes it easy to debug problems with a copy of live
data.

My home server takes daily snapshots of everything (using hard links
when data is unchanged to minimize storage).

https://rsync.samba.org/
https://en.wikipedia.org/wiki/Hard_link

Step 6: Logging

More engineering tradeoffs

* 11 region problem applies here too

Logging

Solution: log shipper!

Shipping Logs

More information

* |.0g shipper

* Multiple Logs for Resiliency

https://fly.io/blog/shipping-logs/
https://fly.io/blog/redundant-logs/

Step 7: Deploying

Rubber meets the road

* Deploying a update is a matter of replacing a machine and starting
the application.

* No ordering problems like you see with microservices

 Machines start in milliseconds. A (small number) of hundreds of
milliseconds to be sure, but still fast. And proxies will buffer.

* |f DB migration or rsync is needed, app startup may be delayed,
but displaying a “please walit” helps.

Step 8: Admin Ul

Automating administration

Showcase Administration

45 Cities - 127 Events

Apply
Log Logs Log
S y Dashboard

Shared Nothing

A journey from one to Infinity

This part is going to have a number of sub-parts:

o Start with a single user / single machine

 Run multiple users with separate databases
 Run multiple machines + this is where we scale
 |dentify macro services

 Backups « this part is crucial

* Logging

o Startup

 Admin Ul

Just imagine...

What if you could give every user of your software
the experience of having a dedicated server
machine assigned to them?

Shared Nothing

Links

* Agile Web Development with
Rails 7.2

e Fly.io

 smooth.fly.dev

e https://qgithub.com/rubys/
showcase/blob/main/
ARCHITECTURE.md

https://pragprog.com/titles/rails72/agile-web-development-with-rails-7-2/
https://pragprog.com/titles/rails72/agile-web-development-with-rails-7-2/
http://fly.io
https://smooth.fly.dev/
https://github.com/rubys/showcase/blob/main/ARCHITECTURE.md
https://github.com/rubys/showcase/blob/main/ARCHITECTURE.md
https://github.com/rubys/showcase/blob/main/ARCHITECTURE.md

